232 research outputs found

    Electron Paramagnetic Resonance Studies of Succinate:Ubiquinone Oxidoreductase from Paracoccus denitrificans

    Get PDF
    Electron paramagnetic resonance (EPR) studies of succinate:ubiquinone oxidoreductase (SQR) from Paracoccus denitrificans have been undertaken in the purified and membrane-bound states. Spectroscopic “signatures” accounting for the three iron-sulfur clusters (2Fe-2S, 3Fe-4S, and 4Fe-4S), cytochromeb, flavin, and protein-bound ubisemiquinone radicals have been obtained in air-oxidized, succinate-reduced, and dithionite-reduced preparations at 4–10 K. Spectra obtained at 170 K in the presence of excess succinate showed a signal typical of that of a flavin radical, but superimposed with another signal. The superimposed signal originated from two bound ubisemiquinones, as shown by spectral simulations. Power saturation measurements performed on the air-oxidized enzyme provided evidence for a weak magnetic dipolar interaction operating between the oxidized 3Fe-4S cluster and the oxidized cytochrome b. Power saturation experiments performed on the succinate- and dithionite-reduced forms of the enzyme demonstrated that the 4Fe-4S cluster is coupled weakly to both the 2Fe-2S and the 3Fe-4S clusters. Quantitative interpretation of these power saturation experiments has been achieved through redox calculations. They revealed that a spin-spin interaction between the reduced 3Fe-4S cluster and the cytochrome b (oxidized) may also exist. These findings form the first direct EPR evidence for a close proximity (≤2 nm) of the high potential 3Fe-4S cluster, situated in the succinate dehydrogenase part of the enzyme, and the low potential, low spin b-heme in the membrane anchor of the enzyme

    Surface Aggregate Structure of Nonionic Surfactants on Silica Nanoparticles

    Full text link
    The self-assembly of two nonionic surfactants, pentaethylene glycol monododecyl ether (C12E5) and n-dodecyl-{\ss}-maltoside ({\ss}-C12G2), in the presence of a purpose-synthesized silica sol of uniform particle size (diameter 16 nm) has been studied by adsorption measurements, dynamic light scattering and small-angle neutron scattering (SANS) using a H2O/D2O mixture matching the silica, in order to highlight the structure of the surfactant aggregates. For C12E5 strong aggregative adsorption onto the silica beads, with a high plateau value of the adsorption isotherm above the CMC was found. SANS measurements were made at a series of loadings, from zero surfactant up to maximum surface coverage. It is found that the spherical core-shell model nicely reproduces the SANS data up to and including the local maximum at q = 0.42 nm-1 but not in the Porod region of high q, indicating that the surface area of the adsorbed surfactant is underestimated by the model of a uniform adsorbed layer. A satisfactory representation of the entire scattering profiles is obtained with the model of micelle-decorated silica beads, indicating that C12E5 is adsorbed as spherical micellar aggregates. This behaviour is attributed to the high surface curvature of the silica which prevents an effective packing of the hydrophobic chains of the amphiphile in a bilayer configuration. For the maltoside surfactant {\ss}-C12G2 very weak adsorption on the silica beads was found. The SANS profile indicates that this surfactant forms oblate ellipsoidal micelles in the silica dispersion, as in the absence of the silica beads

    Коррекция двигательных и поведенческих функций в лечении и реабилитации больных шизотипическим расстройством

    Get PDF
    На основании особенностей невербального поведения больных шизотипическим расстройством разработаны поведенческие методы, применение которых в их комплексной терапии позволяет добиться более полной редукции психопатологической симптоматики.Behavioral methods were worked out basing of the peculiarities of non−verbal behavior of the patients with schizotypical disorders. The use of the methods in complex therapy allows to achieve more complete reduction in psychopathological signs

    Identification of NCAN as a candidate gene for developmental dyslexia

    Get PDF
    A whole-genome linkage analysis in a Finnish pedigree of eight cases with developmental dyslexia (DD) revealed several regions shared by the affected individuals. Analysis of coding variants from two affected individuals identified rs146011974G >A (Ala1039Thr), a rare variant within the NCAN gene co-segregating with DD in the pedigree. This variant prompted us to consider this gene as a putative candidate for DD. The RNA expression pattern of the NCAN gene in human tissues was highly correlated (R > 0.8) with that of the previously suggested DD susceptibility genes KIAA0319, CTNND2, CNTNAP2 and GRIN2B. We investigated the association of common variation in NCAN to brain structures in two data sets: young adults (Brainchild study, Sweden) and infants (FinnBrain study, Finland). In young adults, we found associations between a common genetic variant in NCAN, rs1064395, and white matter volume in the left and right temporoparietal as well as the left inferior frontal brain regions. In infants, this same variant was found to be associated with cingulate and prefrontal grey matter volumes. Our results suggest NCAN as a new candidate gene for DD and indicate that NCAN variants affect brain structure

    Alteration in P-glycoprotein Functionality Affects Intrabrain Distribution of Quinidine More Than Brain Entry—A Study in Rats Subjected to Status Epilepticus by Kainate

    Get PDF
    This study aimed to investigate the use of quinidine microdialysis to study potential changes in brain P-glycoprotein functionality after induction of status epilepticus (SE) by kainate. Rats were infused with 10 or 20 mg/kg quinidine over 30 min or 4 h. Plasma, brain extracellular fluid (brain ECF), and end-of-experiment total brain concentrations of quinidine were determined during 7 h after the start of the infusion. Effect of pretreatment with tariquidar (15 mg/kg, administered 30 min before the start of the quinidine infusion) on the brain distribution of quinidine was assessed. This approach was repeated in kainate-treated rats. Quinidine kinetics were analyzed with population modeling (NONMEM). The quinidine microdialysis assay clearly revealed differences in brain distribution upon changes in P-glycoprotein functionality by pre-administration of tariquidar, which resulted in a 7.2-fold increase in brain ECF and a 40-fold increase in total brain quinidine concentration. After kainate treatment alone, however, no difference in quinidine transport across the blood–brain barrier was found, but kainate-treated rats tended to have a lower total brain concentration but a higher brain ECF concentration of quinidine than saline-treated rats. This study did not provide evidence for the hypothesis that P-glycoprotein function at the blood–brain barrier is altered at 1 week after SE induction, but rather suggests that P-glycoprotein function might be altered at the brain parenchymal level

    Cardiac Alpha-Myosin (MYH6) Is the Predominant Sarcomeric Disease Gene for Familial Atrial Septal Defects

    Get PDF
    Secundum-type atrial septal defects (ASDII) account for approximately 10% of all congenital heart defects (CHD) and are associated with a familial risk. Mutations in transcription factors represent a genetic source for ASDII. Yet, little is known about the role of mutations in sarcomeric genes in ASDII etiology. To assess the role of sarcomeric genes in patients with inherited ASDII, we analyzed 13 sarcomeric genes (MYH7, MYBPC3, TNNT2, TCAP, TNNI3, MYH6, TPM1, MYL2, CSRP3, ACTC1, MYL3, TNNC1, and TTN kinase region) in 31 patients with familial ASDII using array-based resequencing. Genotyping of family relatives and control subjects as well as structural and homology analyses were used to evaluate the pathogenic impact of novel non-synonymous gene variants. Three novel missense mutations were found in the MYH6 gene encoding alpha-myosin heavy chain (R17H, C539R, and K543R). These mutations co-segregated with CHD in the families and were absent in 370 control alleles. Interestingly, all three MYH6 mutations are located in a highly conserved region of the alpha-myosin motor domain, which is involved in myosin-actin interaction. In addition, the cardiomyopathy related MYH6-A1004S and the MYBPC3-A833T mutations were also found in one and two unrelated subjects with ASDII, respectively. No mutations were found in the 11 other sarcomeric genes analyzed. The study indicates that sarcomeric gene mutations may represent a so far underestimated genetic source for familial recurrence of ASDII. In particular, perturbations in the MYH6 head domain seem to play a major role in the genetic origin of familial ASDII

    Extra-Renal Elimination of Uric Acid via Intestinal Efflux Transporter BCRP/ABCG2

    Get PDF
    Urinary excretion accounts for two-thirds of total elimination of uric acid and the remainder is excreted in feces. However, the mechanism of extra-renal elimination is poorly understood. In the present study, we aimed to clarify the mechanism and the extent of elimination of uric acid through liver and intestine using oxonate-treated rats and Caco-2 cells as a model of human intestinal epithelium. In oxonate-treated rats, significant amounts of externally administered and endogenous uric acid were recovered in the intestinal lumen, while biliary excretion was minimal. Accordingly, direct intestinal secretion was thought to be a substantial contributor to extra-renal elimination of uric acid. Since human efflux transporter BCRP/ABCG2 accepts uric acid as a substrate and genetic polymorphism causing a decrease of BCRP activity is known to be associated with hyperuricemia and gout, the contribution of rBcrp to intestinal secretion was examined. rBcrp was confirmed to transport uric acid in a membrane vesicle study, and intestinal regional differences of expression of rBcrp mRNA were well correlated with uric acid secretory activity into the intestinal lumen. Bcrp1 knockout mice exhibited significantly decreased intestinal secretion and an increased plasma concentration of uric acid. Furthermore, a Bcrp inhibitor, elacridar, caused a decrease of intestinal secretion of uric acid. In Caco-2 cells, uric acid showed a polarized flux from the basolateral to apical side, and this flux was almost abolished in the presence of elacridar. These results demonstrate that BCRP contributes at least in part to the intestinal excretion of uric acid as extra-renal elimination pathway in humans and rats
    corecore